Strong and Weak Convergence for Asymptotically Almost Negatively Associated Random Variables
نویسندگان
چکیده
منابع مشابه
Strong and Weak Convergence for Asymptotically Almost Negatively Associated Random Variables
The strong law of large numbers for sequences of asymptotically almost negatively associated (AANA, in short) random variables is obtained, which generalizes and improves the corresponding one of Bai and Cheng (2000) for independent and identically distributed random variables to the case of AANA random variables. In addition, the Feller-type weak law of large number for sequences of AANA rando...
متن کاملComplete Convergence for Arrays of Rowwise Asymptotically Almost Negatively Associated Random Variables
Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise asymptotically almost negatively associated random variables. Some sufficient conditions for complete convergence for arrays of rowwise asymptotically almost negatively associated random variables are presented without assumptions of identical distribution. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted s...
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2013
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2013/235012